• 手机版
  • 收藏本站
当前位置: 首页 > 申报材料 > 中心动态 > 正文

学术讲座:Mesoscale Computational Materials Science: Phase-field Method

发布时间:2016-07-11 点击数:

主讲:陈龙庆教授

时间: 2016年07月15日 下午3:00—4:00

地点: 实验楼P203

主持人:罗仲宽教授

陈龙庆简历

  陈龙庆是美国宾夕法尼亚州立大学材料科学与工程Donald W. Hamer讲座教授, 工程科学与力学教授, 和数学教授,清华大学材料科学与工程系短期计划教授,自然出版集团杂志npj Computational Materials主编。他分别在浙江大学,纽约州立大学石溪分校,麻省理工学院获得材料科学与工程系学士(1982),硕士(1985),博士(1990)学位。经过两年在罗格斯大学的博士后研究,他于1992年开始在宾夕法尼亚州立大学任教。他的主要研究方向是介观尺度和多尺度计算材料学,相场方法及数学模拟,微观结构和微观弹性理论,合金沉淀相形貌和粗化,铁电和多铁氧化物畴结构与反转,相变热力学与动力学,晶粒生长,电化学反应和离子导电,介电材料降解与击穿,固态氧化物燃料电池, 锂离子电池。他已发表文章500多篇 (Web of Science: H-因子67; 总引用>18,000; Google Scholar: H-因子76; 总引用>26,000) 1项专利。陈龙庆教授获得过多种奖项,包括美国海军研究办公室的青年研究者奖,两次美国自然科学基金特别创造性奖,宾夕法尼亚州立大学优秀工程学者奖和杰出教授,教育部**讲座教授,中国基金委海外杰出青年Guggenheim(古根海姆)Fellow,美国ASM学会会士,美国陶瓷学会会士,美国物理学会会士,美国材料研究学会会士,美国TMS功能材料分会杰出科学家奖,美国材料研究学会理论奖,和中科院沈阳金属所李薰讲座奖。

报告内容简介

  Mesoscale materials science is the study and manipulation of the hierarchical architectures of structural, magnetic, electric polarization, charge, and chemical domains that bridge the atomic scale electronic structure and the macroscopic continuum, as well as their variation with system size and shape and their responses to changes in environmental conditions.  It is the dynamics of the mesoscale architecture that largely controls the responses of a material to external mechanical, magnetic, electric and chemical stimuli. To capture, understand, and control mesoscale architectures requires computational approaches beyond the electronic structure methods and molecular dynamics simulations at the atomic scale. This presentation will introduce the phase-field method, which has emerged as the most powerful and general approach to model and predict the hierarchical mesoscale structures between atoms and the continuum bulk. In the phase-field method, the mesoscale architecture of a material is described by a set of continuum fields such as spatial distributions of atomic density, chemical composition, long-range atomic order, crystallinity, and ferroic order. By transcending the atomic scale, it can handle arbitrarily complex spatial distributions of structure, composition, and order parameters; it can account for the interfacial and defect energies as well as the long-range electrostatic, magnetic, and elastic interactions within a mesoscale architecture. It has been successfully applied to modeling and predicting phase transitions and domain formation, solidification, grain growth, particle coarsening, electrochemical processes, dislocation dynamics, fracture, and biological cells. It will be demonstrated that one can use the phase-field method to help interpreting experimental observations as well as to provide guidance to achieve desirable mesoscale structures in a wide variety of materials systems.  A phase-field software package under development at Penn State will also be introduced.

欢迎有兴趣的师生参加!